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Abstract

Computer vision systems are today an important
sensor for intelligent robotic systems. However, the
design of a vision system that a robot can use as a fast
and robust sensors in a complex, partially unknown
and dynamic environment is still difficult. A main
reason for this is that the parameters of vision systems
are often adjusted by hand and remain static during
the operation of the robot. In this paper we present an
general architecture that adapts the the parameters of
a segment based low-level vision system dynamically to
increase its speed and robustness. Adaptation is done
to a priort knowledge about the environment or to the
sensor data itself. The architecture 1s implemented on
a mobile robot using special hardware that allows real-
time operation. Quantitative experimental data on its
performance is given.

1 Introduction

Computer vision today has become an important
sensor for robotic systems. However, the design of vis-
ion system that a robot can use as fast and robust
sensors in a complex, partially unknown and dynamic
environment is still difficult. Vision systems used in
robotics usually consists of a static set of steps pro-
ducing a symbolic representation of the scene as an
output. In the last decade however, the concept of
computer vision has changed towards a dynamic pro-
cess [1]. A Computer vision system is now considered
as a sensor whose use has to be actively planned and
whose parameters have to be constantly adapted to a
priori knowledge and the results obtained.

Active vision has developed architectures for the
automatic control of the external degrees of freedom
of image acquisition systems (e.g. pan, tilt, focus, ver-
gence, zoom). The parameters of the feature extrac-
tion system (e.g. smoothing parameters, feature de-
tection thresholds) itself however have so far remained
static. Their control however 1s important, as research

in computer vision systems in the last years, notably in
the field of performance characterization, has shown.
The selection of the parameters is often more signi-
ficant for the results obtained by the system than the
choice of the individual algorithms used.

Figure 1: The KASTOR camera head on the mobile
robot PRIAMOS.

While for some vision applications parameters can
be adjusted individually for each scene by a human
operator, this is not possible on mobile robots. If the
performance of the system has to be fast as well as
robust at the same time (robust against changing en-
vironmental conditions and to noise) it is necessary to
constantly adapt the parameters of the system to the
environment, the objects we try to locate and the res-
ults obtained. We therefore need an automatic control
strategy for these parameters.

In this work we present a control architecture for
parameters of a segment based computer vision sys-
tem. The system is implemented on the the mobile

robotic system PRIAMOS [2] (figure 1). PRIAMOS



is a mobile robot that is used as a test-bed for the in-
telligent use of multiple sensor-systems. It is equipped
with the active camera head KASTOR, and special
hardware allowing segment extraction in real time.
The vision system is used for various robot naviga-
tion and exploration tasks [3].

We first discuss what parameters the vision system
has and how they affect its overall performance, sug-
gest a number of control strategies for them, present
the design of the vision system and give experimental
results.

2 Parameters and their Effect

The vision system used by the robot is a classic seg-
ment based vision system (for a complete description
see e.g. [4]) as it is used for various applications. It is
depicted in figure 2.
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Figure 2: The segment extraction system.

On the left side of the diagram we can see the steps
of the vision system. The input of the system are the
images that are captured by the active camera head.
In the next step the absolute value of the gradient and
its direction is calculated for every image pixel and
all gradient non-maxima are suppressed. In the third
step all pixels with a gradient above a certain value
are chained to contours. The contour chains are trans-
formed into segments in step 4. Finally the segments
are filtered by removing all segments that do not meet
certain criteria. Usually the criterion used is a min-
imum length for the segments. We we will later sug-
gest an enhanced approach using an additional hough-
space matrix.

Before we can define a control strategy, we have to
analyze how each parameter affects the overall output
of the system.

The calculation of the gradient image is usually
done by convolving the image with an edge detector
(or filter). Common detectors are the finite Sobel and

Canny detector or the infinite Deriche detector. Two
of the most important parameters of edge detectors is
their stability in the presence of high frequency noise
(their smoothing strength) and how their response de-
pends on the orientation of the edge (anisotropic edge
detectors). We will treat each of these properties as a
parameter of its own.

2.1 Smoothing Strength

As Canny [5] has shown the derivative of a Gaus-
sian is a good approximation of an edge detection op-
erator that is optimal according to his criteria. The
only parameter that can be adjusted is the size of the
Gaussian.

The effect of this parameter is best described as the
smoothing strength. Convolving the image with the
derivative of Gaussian is equal to convolving it with
a Gaussian and calculating the derivative. We could
there as well smooth the image and calculate the de-
rivative of the smoothed image. The Gaussian will act
as a low-pass filter and eliminate high-frequency noise
making the calculation of the gradient stable. Addi-
tionally however it will suppress small details.

Usually the noise and contents parts of an image
can not be distinguished by their frequency spectrum.
Smoothing will always destroy noise and image details
at the same time. The situation is even more com-
plicated by the fact that what is considered noise will
depend on the task the system has to perform. Signal
processing defines everything as noise that is obscuring
the desired information in the data. If we try to find a
large shape (e.g. a door) any small details (e.g. door
handle, hinges, small objects in front of the door) that
cause the contour line of the door to break are noise,
if we are trying to locate one of the small details (e.g.
the door handle) they are important data. We there-
fore have to adapt the smoothing to the object we are
interested in.

Witkin [6] has proposed the scale-space to describe
the behavior of features under smoothing. The optimal
scale space position (or smoothing strength) at which
we should observe the feature however is difficult to
predict. A low scale space position will not suppress
other features sufficiently while a too high scale space
position will make the feature disappear. Witkin has
additionally shown that before the features disappear
their location will become unstable. If high precision
of the contours is required (e.g. for 3D reconstruction
of the scene) it is therefore important to choose a scale
space location significantly below this point.

Hardware and computational constraints often limit
the maximum possible smoothing of the edge detectors.
A way to obtain additional smoothing is to defocus the



cameras of the camera head. This however is only ef-
fective to suppress noise (or details) that are contained
in the image. Noise that i1s generated by the image ac-
quisition process (e.g. camera noise) is not reduced.
Defocusing the cameras only became applicable after
the introduction of high-quality low-noise digital cam-
eras.

2.2 Anisotropic Edge Detectors

Usually two operators are used to obtain the first
derivative of the image in X- and Y-direction for each
pixel. From these two values the direction and mag-
nitude of the gradient are calculated. Depending on
the edge detector used the response of the detector to
edges with different orientations do not have to be the
same. We can design edge detectors that give pref-
erence to edges with certain orientations. Canny [5]
has shown that these anisotropic operators make edge
detection more robust.

If we know the geometry of the object we are trying
to locate in the scene we can determine what the ori-
entation of its edges is. If the current task of the robot
is to drive through a door it is sufficient to identify
the two vertical edges of a frame. Therefore an edge
detector that is only sensitive to vertical lines can be
used. Other applications are to use artificial Land-
marks with diagonal lines which are easy to identify if
edge detectors are used that are only sensitive to them
or to detect the vanishing lines in a corridor where the
approximate angles are known.

There are two main reason why anisotropic edge de-
tectors allow a more robust segment detection. First
the classic gradient maxima thinning is unstable is
situations as T-intersections of segments or edges with
an angle of 22.5 degrees. The distribution of the gradi-
ent direction in both cases is random and torn contour
chains due to thinning or chaining errors are frequent.
The second reason is the anisotropic edge detection
reduce the amount of data significantly as the experi-
mental data in section 4.1 shows.

2.3 Gradient Threshold

After the calculation and thinning of the gradi-
ent image only those pixels are chained into con-
tours whose absolute gradient value is above a certain
threshold. This is done to prevent weak edges from
generating segments.

A higher gradient threshold will lead to less seg-
ments and low-contrast segments are more likely to
break. If the threshold is low, the segments we are in-
terested in will be found. However a large number of
other segments, some of them due to various types of
noise, will also be detected. If the threshold is set very
low even the quality of the strong segments deterior-

ates as the growing number of T-intersections causes
segments to break.

Canny [5] proposed a hysteresis thresholding tech-
nique which is superior to simple thresholding but even
more difficult to control and incompatible with our
special hardware.

2.4 Segment Thresholds

The contour to segment transformation contains a
thresholding operation in most vision systems. Typ-
ically one threshold is used to control the maximum
deviation of a segment from a straight line before it
is broken into two pieces. It is either implemented as
an angle or distance threshold. For our application a
static setting of this threshold has proven sufficient.

A second threshold specifies the minimum length a
segment has to have. This threshold can be used to
separate segments and white Gaussian noise [7] or to
find only objects of a certain size.

We were looking for a fast but more complex filter
that could not only separate segments by their length
but also by their position and orientation. Two major
possibilities are apparent:

Filtering in the Image Domain. By specifying a
mask only the edges in some areas on the scene could
be selected. Control of the desired orientation of the
edges 18 however impossible and for some applications
(e.g. finding all vanishing lines) no reduction of the
segments is possible.

Filtering in the Segment Domain. Every segment
can be characterized by its coordinates in the hough-
space (angel and distance to origin). This allows the
selective filtering of certain orientations, positions for
all of our applications.

Hough-Space filtering is fast. For each edge only
the angel and distance to the origin are calculated and
the corresponding matrix position is checked. Figure
3a shows example matrices for the door experiment
and the detection of vanishing lines.
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Figure 3: Hough-space filter matrices for door scene
and vanishing point detection. An angel of 90° corres-
ponds to vertical edges. For the vanishing lines case
only the absolute value of the distance has been used.

The location of expected segments is only known



with a certain precision. The precision of the hough
space filter can be easily increased by dilating the mat-
rix with a structured element. In figure 3 the black
matrix elements are the original predictions and the
grey area surrounding them is the tolerance generated
by dilation.

3 Control Strategy and System design

The parameters of the vision system are adapted to
two different things. First to a priori knowledge
about its environment, the robot and the task we per-
form. Second to the sensor data we obtain during
the vision process.
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Figure 4: Control Architecture of the System

The overall design of the vision system is shown in
figure 4. To the right we see the steps of the vision
process. From the images that are captured by the
active camera head the gradient is calculated, contours
are chained, these are transformed to segments which
are filtered by the hough-space filter. Finally the high
level vision steps as matching the segments between the
camera images, reconstruction of the 3D-scene and its
evaluating the scene, are executed. On the top of the
image one sees the interface of the architecture with the
robot. To the right the sensor planner or task planner
receives the results of the vision system and triggers
new vision tasks. To the left the databases containing
the knowledge of the vision system are shown. These
are the constantly updated world model of the robot,
the configuration of the robot and the task database
containing knowledge about how certain vision tasks
are executed. Below it is the control structure for the
vision system. Arrows indicate the flow of information.

3.1 Use of Model and Task Knowledge

When the vision system is given a task to perform
it usually has some information about what structures
it will see in its environment. Predictions come from
three main sources.

From the World Model the robot can obtain a
list of segments in his environment and a geometric
description of the object he is trying to locate.

The Robot Configuration includes all the para-
meters of the robot as its position, orientation and the
parameters of the camera head including the calibra-
tion matrices.

With Task Knowledge we mean all knowledge
that is associated with the specific task the robot is
trying to perform. Such knowledge could be “doors
are best located by their vertical segments with vertical
edge detectors” or “door handles are small, use little
smoothing to detect them”.

The vision process now works as follows. At the top
level the world model and the robot position is used to
estimate the relative position of the object and the act-
ive camera head is positioned towards it. Using this
information and the calibration data of the cameras
the segments of the object are projected into the three
camera images. From the projection and the uncer-
tainty of the robot position the hough space matrices
are calculated.

The estimated best point in scale space where to de-
tect the object is contained in the task database. We
can not simply derive it from the geometrical size of
the object as we have to consider the distance to other
objects and their relative contrast. The segment length
threshold too is currently stored with the task know-
ledge database. Its best setting depends on the likeli-
ness of segments to break. The task database addition-
ally contains data about what kind of edge detectors
to use (e.g. diagonal for vanishing lines, anisotropic
for exploration).

From the desired smoothing the setting for the focus
of the camera head and the smoothing value for the
gradient is derived. From this and the information
about the use of anisotropic edge detectors the final
filter matrices are calculated.

3.2 Adaptation to Obtained Data

A priori knowledge provides us with good initial
settings for the parameters. However, as the robot of-
ten operates in an only partially known or changing
environment, some parameters have to be readjusted
during the vision process. If the light is switched off or
objects the robot tries to locate have moved it has to
adapt the vision system to the new conditions by chan-
ging the gradient thresholds or making his prediction



of the position of the object more tolerant.

In order to derive control mechanisms for a para-
meter we first need a model how the parameter affects
the results of the corresponding step of the system.
From this model we can then derive an evaluation cri-
terion which we can use in order to determine how
we have to change the parameter. We have implemen-
ted dynamic control for two parameters, the gradient
threshold and the hough space filter.

The optimal setting of the gradient threshold has
been investigated repeatedly [7, 8]. All authors
however assume that its purpose is to separate struc-
ture from noise for which a simple statistical model
exists (e. g. white Gaussian). This is not applicable
in out case as the main sources of segments of non-
interest is not random noise but other image features.
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Figure 5: Segment histograms for different detection
thresholds. Sum of 5 experiments.

Figure 5 shows the histograms of the number of
detected pixels that belong to segments of a certain
length (this is the same as the number of segments mul-
tiplied with their length) for different sensitivity (the
inverse threshold) settings. The number of short (< 50
pixels) segments is about proportional to the threshold.
This indicates that these segments are mainly due to
noise, textures etc. but not to real image strctures
of a particular size. The peaks at 170,200,220 and
240 pixels are the long structures we are interested in.
They remain almost unchanged until they disappear
completely at some threshold level. We thus propose
three different control mechanisms:

Histogram Matching. If we know the object we
are looking for we can calculate its segment histogram
and change the threshold until the object histogram is
part of the histogram we see.

Constant Number of Segments. If we do not
know what object we are looking for we can not use
the above technique. Assuming that all scenes contain
roughly the same amount of structure we can use the
reflex to keep the number of segments constant. This

does not work well in scenes with many long lines.
Long segments will tend to break if the threshold is
too low, this will generate more segments, the reflex
will lower the threshold further breaking even more
long segments etc.

Segment Pixel Ratio. The above technique can
be enhanced if we allow more short edges in images in
which we have found large structures. A criterion that
has proven successful is:

Piz(length > 100)
10

Piz(length < 100) = 2000 +

Here Piz(X) denotes the total number of pixels of
all edges for which X is valid. The selection of the type
of reflexive control loop is stored in the task database.

A second level of adaptive control is included in
the hough filtering process. The histogram matching
technique is used to verify if the segment extraction
has failed. If this is the case the hough filter will change
its tolerance (by dilating the matrix) and restart the
vision process.

4 Experimental Results

As an experiment to illustrate the performance of
the system we have chosen the task of locating a door
in an indoor environment. This is a common task as
the robot uses them as landmarks, has to determine if
they are open and pass through them frequently. The
scene where the door has to be located is displayed
in figure 6a. Detecting the door in a fast and robust
way have proven difficult in earlier experiments. Many
small lines in the door frame create additional lines,
small details (e.g. the hinges) cause the contours to
break and many smaller structures around the door
create additional lines that have to be distinguished
from door fragments.

4.1 Predictive Adaptation

The door recognition process is initiated by the task
controller of the robot. The vision system now uses
task knowledge and knowledge about the geometry of
the door to adapt its low level parameters. The task
knowledge associated with the task is that the door
is best found by its two long vertical side edges of the
frame and that these edges are large compared to their
environment. The gradient calculation matrices are
therefore set to a maximum smoothing detector that
will only detect vertical edges and, the active camera
head defocuses the cameras slightly.

Using the geometric model of the door, the world
model, an estimation of the robot position and the
calibration matrices of the cameras it projects the ex-
pected segment position into the images. With this
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Figure 6: (a-e) The results of the vision system with
different types of adaptation. (a) Real image (b) Edges
without optimization (c) With scale space adaptation
(d) With additional use of anisotropic edge detectors
(e) after Hough-Space filtering

position and an estimation of the current location er-
ror it initializes the matrices of the hough-filter and
positions the active camera head. Finally the image
acquisition process is started.

In figure 6 the result of the acquisition process with
different levels of adaptive control are shown. In this
experiment the early error detection was switched off.
Only segments with a length above 5 are shown. Fig.
6b shows the segments of the image without any ad-
aptive control. The door contours are broken, seg-
ments parallel to it make identification of the door dif-
ficult and the image contains many segments of non-
interest. In figure 6¢ smoothing detectors are used.
The number of segments is reduced, the left door seg-
ment is no longer broken (as the hinges only cause a
very weak deviation of the contour at this scale space
level). However the left part of the door now has wide
gap due to the melting of the door handle into the door
contour. Figure 6d shows the effect of the additional
use of vertical edge detectors. The number of seg-
ments is again reduced (as horizontal segments are no
longer detected), the right door segment is now almost
rejoined and most segments are slightly longer. The fi-
nal figure 6e shows the segments that are passed to the
upper levels if the hough-space filter is activated. An
additional data reduction (depending on the precision
of the estimation by a factor of 5-15) is visible.

To obtain more quantitative and objective results
we have measured the effect of the optimization on the
histogram of the detected segments. Figure 7 shows
the results. The y-axis shows the number of pixels
that belong to segments of this length. Each histogram
shows the result of 10 independent measurements of
the same scene. Without any adaptive control a large
number of segments, most of them short and due to
broken segments or noise, are found. With adaptive
smoothing the number of short segments is reduced.
However the number of pixels on very long segments
(>200) remains constant. The additional use of an-
isotropic edge detectors further reduces the detection
of short segments but increases the number of detec-
ted long segments. The edge detector that only detects
vertical edges should only detect about half the number
of segments as an anisotropic filter. The fact that it de-
tects more segment suggests that it is possible to use a
lower gradient threshold with anisotropic edge detect-
ors. This further reduces the number of segments that
have to be processed.

4.2 Continuous Control

In order to test the reflexive behavior of the gradient
threshold we place the robot in front of the door and
give the vision system the task to look for a large,
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Figure 7: (a-c) Segment histograms of door scene with
different types f adaptation. (a) No adaptation (b)
Scale space adaptation (c) Additional anisotropic edge
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The threshold is initialized
to a value which has proven to be successful in the

high contrast structure.

past. Now the system is exposed to a strong change in
contrast (by switching on all lights of the room). While
the automatic gain control of the cameras compensates
for some of the change the number of detected segments
rises dramatically.

Figure 8a shows the segments obtained after switch-
ing the light on. The large number of detected seg-
ments does not only make identification of the desired
ones extremely difficult but the large number of gradi-
ent pixels creates many T-forks and causes even seg-
ments of high-contrast segments to break. The robot
was not able to identify the door in this situation. The
results of the experiment with the threshold reflex bee-
ing active is shown in figure 8b. The gradient threshold
is adjusted automatically to a value that only high con-
trast segments remain and identification of the door
segments if now easily possible.

A diagram of the dynamic behavior of the reflex is
shown in figure 9. The upper diagram shows the value

Figure 8: (a-b) Segments of door scene after a change
of contrast (a) without threshold reflex (b) with
threshold reflex.
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Figure 9: (a-b) Reflexive control of the detection

threshold. (a) Threshold Value (b) Number of detec-
ted pixels

of the sensitivity (the inverse threshold) and the lower
one the total number of detected pixels.

At the beginning of the experiment the room is rel-
atively dark. The reflex has adjusted the sensitivity to
a value around 2.0. At t=214 the light is switched on.
The number of detected pixels increases by a factor of
about 1.5. As it is now much easier to detect the door
the sensitivity is slowly lowered to 0.15, It is interest-
ing to note that we now only need to detect about half
as many segments in order to find the same number



of long segments. At t=252 the light is switched off.
The number of found pixels drops and is slowly read-
justed a value similar to the one at the beginning of
the experiment.

The cycle time of the reflex varies between 1.0 (after
switching the light on) and 0.15 (after switching it off).
In our Experiments reaction of the reflexive control
was damped as faster response proved to be unstable.
In normal robot operation drastic changes in contrast
do not happen frequently. While it is important that
the robot is able to continue operation when they occur
quick reaction is less important. The reaction time of
the reflex is between 10 and 30 seconds. This is sim-
ilar to the time humans need to adapt to significantly
different lightning conditions.

5 Conclusion and Future Work

We have presented a general control architecture
that automatically adjusts the parameters of a low-
level vision system to a priori knowledge about the
observed scene and the results obtained. The archi-
tecture has been implemented on a mobile robot and
quantitatively evaluated. It has proven to make the
feature extraction process, and thus the overall per-
formance of the robot, more robust and faster. We
have demonstrated the successful use of the reflexive
control of low-level vision parameters with cycle times
of less than 0.2 seconds and how this gives the robot
the ability to use his vision sensor effectively in dy-
namic environments.

The use of the control architecture of low-level vis-
ion parameters is not limited to mobile robotics. The
performance of any vision application that uses seg-
ments and has some knowledge about its environment
the architecture can be used. In static environments
or environments of which complete model is available
(e.g. industrial robotics, surveillance) even better per-
formance can be expected.

Several extensions of the work are currently under
consideration. Currently the settings for the smooth-
ing, the anisotropic edge detectors and the expected
segment lengths are contained in the task database.
A better method would be to calculate them directly
from the geometric model of the object. This however
requires a fast model of the effect of these parameters
on the obtained images.

The reaction times for the dynamic control of the
gradient threshold could be enhanced by a better con-
trol strategy. Additionally the system should remem-
ber the best threshold for a certain location and object
to enhance the initial setting.
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