LIFIA.
Institut IMAG

Groupe Prof. James L. Crowley

VisionCLIPS

Users guide

Guido Appenzeller
Marianne Hardt
Cordelia Schmid

December 8, 1994

LIFIA, Institut IMAG
46, avenue Félix—Viallet
38031 Grenoble Cedex
France

Fax: (33) 76 57 46 02
Email: lifia.imag.fr

Contents

1 Introduction

1.1
1.2
1.3
1.4

Basic concepts L e
CLIPS . . e
Overview of existing functions
Static and dynamic linkingo oL

2 Modules for VisionCLIPS

2.1 Writing modules for VisionCLIPS
2.1.1 Structureof amodule
2.1.2 The DefineFunction()
2.1.3 Anexample module o oo

2.2 The shared module
221 Purpose e e e e e e
2.2.2 Thesymboltable
223 Anexample L

3 Dynamic CLIPS

3.1 Basicconcepts e e e
3.1.1 Linking Cto CLIPS
3.1.2 Dynamic Linking oo
3.1.3 Dldand CLIPS
3.1.4 Advantages and Disadvantages

3.2 Modules for Dynamic CLIPS
3.2.1 Structureof amodule,
3.2.2 The link-instructions L.
3.2.3 The DefineFunction()
3.24 Anexample module o 0oL

3.3 Using Dynamic CLIPS
3.3.1 Linking moduleso
3.3.2 New functions e

3.4 Internal structure
3.4.1 The interfacing of DId and CLIPS
3.4.2 Linking without DefineFunction()
3.4.3 Unlinking moduleso L oL

4 List of Functions

4.1 Graphic Functions Lo

4.2 Image Functions

4.3 Miscellaneous Functions

4.4 Corner Functions e

4.5 Contour Functionso

4.6 Calibration Functions,

4.7 Histogram Functions L oo

4.8 Line Functions e

4.9 Mathematical Functions,

4.10 Matrix Functions .
4.11 Pyramid Functions
4.12 Sequence Functions

1 Introduction

1.1 Basic concepts

VisionCLIPS is an environment for developing vision-based applications. It consists of
CLIPS, an Al-shell with a lisp like syntax, as the command interpreter and a collection
of modules written in C that are linked to CLIPS.

This document describes the architecture of VisionCLIPS and serves as a users
guide how to use the existing modules and write new ones.

VisionCLIPS was developed at the LIFIA, Institut IMAG, Grenoble by the group
of Prof. Crowley.

1.2 CLIPS

CLIPS is an expert system shell developed by the Software Technology Branch of the
NASA. It supports rule based forward chaining using the Rete algorithm as well as
procedural and object oriented programming.

CLIPS enables the user to add Functions written in C to CLIPS and use them as
new CLIPS functions. This enables the user to write fast, optimized low-level routines
which then are integrated in an environment having the full advantage of an interpreted
high-level language.

1.3 Overview of existing functions

VisionCLIPS adds to the functionality of CLIPS a large number of functions for image-
processing, feature detection and scene reconstruction as well as functions for visual-
ization. Currently the following modules exist for VisionCLIPS:

Contents Module

Graphic functions graphic.o, line.o
Image handling image.o, sequence.o
Corner detection and handling corner.o
Contour extraction and handling | contour.o
Matching and reconstruction match.o
Segment detection and handling | line.o segment.o
Calibration calib.o
Histogram functions histogramme.o
Mathematical functions math.o, matrix.o
Resolution pyramid of an image | pyramid.o

1.4 Static and dynamic linking

When using VisionCLIPS the user has the choice to link his modules to CLIPS statically
or dynamically.

The advantages and disadvantages of dynamic linking for VisionCLIPS are dis-
cussed in the section DynamicCLIPS.

2 Modules for VisionCLIPS

2.1 Writing modules for VisionCLIPS
2.1.1 Structure of a module

The modules of CLIPS are a library from which the user chooses the part he needs for his
application. A module for VisionCLIPS consists of a C source code file and a list of cor-
rosponding calls to DefineFunction(). A module contains two different types of proce-
dures. Some procedures are connected directly to CLIPS using the DefineFunction()
call while others are used only internally in the module. The procedures interfacng
directly have to use special ways of passing argument and returning results. See the
CLIPS users guide and the CLIPS reference manual for a detailed description. To en-
sure that all modules are compatible with each other, and modules can be either linked
statically or dynamically certain rules should be adhered.

e All functions that are added to CLIPS using DefineFunction() should have a
name beginning with clips_. The rest of the name should be the name of the
clips-function witch dashes replaced by underscores (example: apple-eat would
be clips_apple_eat). The eason for this is coompatibility with DynamicCLIPS
which is explained in section ?7?.

e The name of the function should consist of a first part describing the data type
that is manipulated, a dash, and a second part describing the action. (example:
apple-read, apple-write, apple-display but NOT read-apple)

e No function of a module should call a function of another module. Functions used
by several modules should be stored in libraries.

e All functions except those added to CLIPS and all global variables should be
static.

e The DefineFunction() calls for each module should be stored in a file with the
same name as the module and the ending .def. This file should include prototypes
for the corresponding functions to avoid compiler warnings.

2.1.2 The DefineFunction()

The DefineFunction() (Or for CLIPS version 6 the DefineFunction2()) calls to
add the functions to CLIPS should be made in the UserFunction() of CLIPS or
in the initialization function for the dynamic linker. Both simply include the file
"modulname.def".

2.1.3 An example module

Figure 1 shows a short prototype model. For details on inter- facing with CLIPS see
the CLIPS users guide and programmers manual. See Figure 3 for a similar example
for DynamicCLIPS.

/*

* Apple manipulation for clips
*/
#include <clips.h>

static int apples=5;

void clips_apple_set(void)
{

apples = RtnFloat(1);
}

void clips_apple_display(void)
{
ShowApples(apples); /* This is in a library */

extern void clips_apple_set(void);
DefineFunction2("apple-set",’v’,clips_apple_set,
"clips_apple_set","11f");

extern void clips_apple_display(void);
DefineFunction2("apple-display",’v’,clips_apple_display,
"clips_apple_set","11f");

Figure 1: Example for a static clips module

3 The global CLIPS library

3.1 Purpose

The global CLIPS library is a module, or rather a library that provides functions to
other VisionCLIPS modules to handle pointers. When using a function in VisionCLIPS
that receives a pointer as an argument, and this pointer is invalid (for example 0) clips
will probably crash.

The global CLIPS library provides a possibility to shield of the underlying pointers
from the user completely and use symbols instead. The shared module keeps a list of
pointers and symbols and manages this list.

3.2 The symbol table

The symbol table is a double chained list of symbol nodes. Each node contains the
symbol as a string, the corresponding pointer to an object and the type of the object.

CLIPS functions that want to use a certain object type call a function with the
symbolic name of the object as the argument. They then get a pointer to the object
(or NULL or -1 for invalid BARYs) as the return value. Currently the global CLIPS
library supports images, corners, chains, segment lists and 3D world data. This list
will keep expanding. Functions for new object types can be quickly derived from the
existing ones.

libglobalclips.a provides functions storing, deleting, creating and recalling en-
tries. If an error occurs it will be immediately printed to stdout. When globalclips.c
is compiled it is transformed into a library called libglobalclips.a. The four func-
tions provided for each object type are the following (with TYPE replaced by the
corresponding object type):

e TYPE *get TYPE(char #*name)
Searches the list for an object of this type with the given name. Returns a pointer
to the object if successful, NULL (-1 for images) otherwise.

e int put TYPE(char *name, TYPE *obj)
Stores the object pointer and the name in the symbol table. Should be called
when the object is created. Returns TRUE if successful, FALSE otherwise.

e char *symb new TYPE(TYPE #*object)
Creates a name for an object of the given type and adds it to the symbol table.
This should be called if an object is created and the name doesn’t matter. Object
names will typically be “newTYPEn” with n being a number starting with 0.
Returns the name of the object in the symbol table.

e int remove TYPE(char *name)
Removes this entry from the symbol table. Should be called when an object is
deleted. Returns TRUE if successful, FALSE otherwise.

3.3 An example

Figure 2 shows a simple example for using the global CLIPS library. If the proper
functions for apples do not already exist they will have to be made from the existing

-~

functions. Given an image pointer the function uses get_image to get the image pointer.
Afterwards a new symbol for an apple is requested and the apple pointer is stored using
new_apple_symb.

void clips_apple_detect(void)

{
char fact[512];

BARY *image;
APPLE =*apple;
char *image_name;

image_name = RtnLexeme(1); /* get the name */

image = get_image(image_name);
if(get_image(image_name) != (BARY *) -1) return;

apple = DetectApple(image); /* Library */
sprintf(fact,"apple s in image Ys",

symb_new_apple(apple),image_name) ;
MyAssert(fact);

Figure 2: Example for calling the global CLIPS library

4 DynamicCLIPS

4.1 Basic concepts
4.1.1 Linking C to CLIPS

The normal way of adding functions to CLIPS is writing them into a separate file,
compiling it, linking it to the main CLIPSThe functions are then added to CLIPS by
calls to DefineFunction() in the main module. This method has several disadvantages.

e Each change in a module requires a relinking of the complete VisionCLIPS mak-
ing test-compile cycles long.

e When adding or removing modules the clips source has to be changed.

e When adding modules to VisionCLIPS the user has to find out which libraries
are now needed to link VisionCLIPS successfully.

The ideal solution would be an environment in which the user can specify the
modules he wants to include into CLIPS while CLIPS is already running. This can be
accomplished by dynamic linking.

4.1.2 Dynamic Linking

When linking executables the linker takes the separate object modules generated by
the compiler. He resolves references between modules and from modules to libraries
and merges the modules and the necessary library functions into one executable.

Dynamic linking enables the programme to perform some of these steps while it is
already running. When the program is generated the static linker takes only a minimal
necessary subset of the program, merges it with the dynamic-link library and generates
an executable.

This executable has the possibility to link object modules while it is running. The
dynamic linker will resolve references from the new modules to the executable and will
provide the executable with means to call functions in the module. It further offers
functions to unlink object modules and to detect if a function is executable.

4.1.3 DId and CLIPS

The dynamic linker chosen for DynamicCLIPS is DId from the Free Software Foun-
dation. DId is based on 1d, the linker of the GNU-C package and the source code is
available under the GPL. It is available on a large number of platforms. In DId only
minor changes had to be made to adapt it to CLIPS.

DynamicCLIPS provides the user with a new CLIPS instructions to link and un-
link modules. After a module is linked DynamicCLIPS call an initialization func-
tion in the module which links the needed library and makes the necessary calls to
DefineFunction().

4.1.4 Advantages and Disadvantages

Although DynamicCLIPS will normally be easier to use as static CLIPS it has some
disadvantages. The advantages of DynamicCLIPS are:

e Easy to configure for a specific need. No recompiling/relinking if needed modules
change.

e Short development cycles as DynamicCLIPS has not no be re-linked or even
stopped to change a recompiled module.

e Information about necessary libraries contained in the module.

e Different versions of a module can be used in parallel.

e Easier to provide a central library of modules that can be updated constantly.
The disadvantages are:

e Debugging is harder as no source level debugger currently supports dynamic

linking.

e Linking modules to DynamicCLIPS takes some time. When VisionCLIPS has to
be restarted frequently (e.g. crashes) this might be a drawback.

e If all modules are included slightly higher memory consumption.

It should be noted that a properly written module for DynamicCLIPS can either
be linked dynamically or statically.

4.2 Modules for DynamicCLIPS
4.2.1 Structure of a module

The structure of a DynamicCLIPS module is the same as described in 2.1.1 with two
differences. An include file called dclipsmod.h has to included at the start of each
module and an initialization function has to be provided.

The initialization function is called after the module has been linked. It contains
the instructions which libraries have to be linked and the calls to DefineFunction().

4.2.2 The link-instructions

If a module needs further libraries it has to make sure that these are linked to the
module. This is done by calling the d1d_1ink() routine of DId. d1d_1ink() needs the
complete path of the library and this path will differ on different systems. If the path
was specified directly in each module, each module would have be changed if a library
was moved. To avoid this the include file dclipsmod.h contains macros which are used
for the calls to d1d_1ink(). This way only dclipsmod.h has to be changed.

The macros have the form DCL_LIBNAME where LIBNAME is the name of the library
without leading “lib” and trailing “.a”.

4.2.3 The DefineFunction()

After the linking instructions the calls to DefineFunction() (or for CLIPS version 6
DefineFunction2()) have to be made. This should be done by including the appropri-
ate NAME.def file. In the file dclipsmod.h a macro called DefineFunction() is defined
that redirects the call to DefineFunction() to a slightly different function. This func-
tion behaves identically to DefineFunction() except that it performs a check if all
subroutines that are called by a function have been linked. If some are missing and
therefore the function is not safely executable an error is displayed and the function is
not added to clips.

4.2.4 An example module

Figure 3 shows a short prototype model. For details on inter- facing with CLIPS see
the CLIPS users guide and programmers manual. See Figure 1 for a similar example
for CLIPS. If the macros for DCL_APPLE and DCL_APPLETREE do not already exist they
have to be created in dclipsmod.h.

10

/*
* Apple manipulation for clips
*/
#include <clips.h>
#include <dclipsmod.h> /* In here the macros for dynamic
linking are defined. */
static int apples=5;

void clips_apple_set(void)

{
apples = RtnFloat(1);

}

void clips_apple_display(void)
{
ShowApples(apples); /* This is in a library */

}

void InitMoudle_apple(void)

{
DCL_APPLE; /* The famous apple library */
DCL_APPLETREE; /* This is needed by the apple library */
DCL_LIBC; /* Needed by the libraries */

#include "apple.def"

{ extern void clips_apple_set(void);
DefineFunction2("apple-set",’v’,clips_apple_set,
"clips_apple_set","11f");

{ extern void clips_apple_display(void);
DefineFunction2("apple-display",’v’,clips_apple_display,
"clips_apple_set","11f");

#define DCL_APPLE d1d("/usr/1ib/Apples/libapple.a");
#define DCL_APPLETREE d1d("/usr/lib/Apples/libappletree.a");

Figure 3: Example of a dynamic clips module

11

4.3 Using DynamicCLIPS
4.3.1 Linking modules

Before using a dynamic module to DynamicCLIPS it has to be compiled. All libraries
the module needs have to specified by the initialization function. If the module wants
to call functions from the main executable this must contain the symbol hunk, that is
it must be compiled with the -g option and may not be stripped using strip.

Clips programs that use the new functions have to be loaded after the modules con-
taining the functions have been linked. Otherwise CLIPS may complain about unknown
symbols.

4.3.2 New functions

LINK-OBJ

Description:

Links an object module to DynamicCLIPS, resolves references from the ex-
ternal module to CLIPS and initializes the module. The module well be
searched in the current directory and the directory specified in the environ-
ment variable DCLIPSPATH.

Syntax:
(link-obj <filename>)

IHPUt:<filena1ne> The name of the module

UNLINK-OBJ

Description:

Unlinks an object module from DynamicCLIPS. The module well be
searched in the current directory and the directory specified in the envi-
ronment variable DCLIPSPATH. Unlinking of functions is only successful if
their names follow the rules defined in section 2.1.1.

Syntax:
(unlink-obj <filename>)

IHPUt:<filena1ne> The name of the module

DEBUG-LINK

Description:

12

Enables detailed debugging output. This will display information which
functions are added to CLIPS, which libraries are linked and how many
references are still undefined after each step.

Syntax:

(debug-link)

4.4 Internal structure

This chapter describes some of the internal features of DynamicCLIPS. It contains no
information that is necessary to use DynamicCLIPS and is intended for people that
want to modify DynamicCLIPS itself.

4.4.1 The interfacing of DIld and CLIPS

When 1ink-obj is called DynamicCLIPS calls the DId function d1d_1ink(). This func-
tions loads the object file, resolves references and generates an internal table of func-
tions of this module. The function in DId that generates these entries calls a function
in dynamic.cc that check each function if it is an InitModule_... function or an
automatic clips function (see section 3.4.2. The first is remembered, the second are
stored in a list. After d1d_1ink() returns InitModule_... is called (probably again
causing the calls to d1d_1ink(). Finally the list of automatic functions is added using
DefineFunction().

A part of the interface code is taken from Ravi, an expert-system shell that features
dynamic loading developed at the LIFIA. The help of the developers of Ravi, especially
of Bruno Zoppis is gratefully acknowledged.

4.4.2 Linking without DefineFunction()

It is possible to add functions to clips from a Module that does not contain an
InitModule_.... As this method has several disadvantages over the previously de-
scribed method it is NOT recommended to do this.

Functions that shall be added to CLIPS automatically start with cauto_ followed
by the return type as in DefineFunction() and an underscore. To add the function
test-it to CLIPS its name would have to be:

void cauto_v_test_it(void)

The problems of this method are that DefineFunction2() can not be used, that
no linking instructions can be specified and that compatibility with static CLIPS is
worse.

4.4.3 Unlinking modules

When unlinking functions VisionCLIPS calls d1d_unlink by file() with the given
filename and a parameter specifying a hard unlink as the argument. For details what
a hard link means see the DId users guide. The hard un-link is necessary because of
the reference to the CLIPS functions in the InitModule function of the module. The
hard un-link means on the other hand that DynamicCLIPS does not check if a function

13

is used by another module. Therefore a module that uses a function from a different
module might crash if the other module is unlinked. Calls between modules will make
unlinking dangerous.

As clips has no information how the name of the CLIPS function is it can only guess
it from the name of the underlying C function. If the rules for naming clips functions
as described in section 2.1.1 are not followed unlink is not able to un-define the CLIPS
function correctly. If it does guess the name of the function this will be linked to a C
dummy function printing an error message.

5 List of Functions

5.1 Graphic Functions

uses the xdraw functions

WINDOW-CREATE

Description:
Creates a window
Syntax:

(window-create [<index> [<name> [<width> <height>
<x-pos> <y-pos>111)
Input: . . .
<index> index used for the created window, default value 1
<name> name of the window to create, default name window

1 or window index if there is an index
<width> the width of the window in pixels, default-value is 512

<height> the height of the window in pixels, the default-value
is 512

<x-pos> the coordinates for the upper left corner of the win-
dow.
<y-pos> The default-value is (0,0)
Asserted fact:

window <title> <width> <height> <x> <y> <index>

WINDOW-CLOSE

Description:
Closes the current window
Syntax:

(window-close)

14

Asserted fact:

window active <index>

WINDOW-CHANGE

Description:

Changes the current window
Syntax:

(window-change <index>)

Input:
P <index> The index of the window to change to

WINDOW-CLEAR

Description:
Clears the current window
Syntax:

(window-clear)

LINE

Description:

Draws a line between two points in the current window
Syntax:

(line <x1> <yl1> <x2> <y2> [<thickness>])
IHPUt:<x1> <y1> the coordinates for the beginning of the line

<x2> <y2> the coordinates for the end of the line
<thickness> the width of the line in pixels, the default level is 1

PLOT

Description:
Plots a point in the current window

Syntax:

15

(plot <x1> <yi1>)

Input: . .
<x1> <y1> the coordinates of the point

CROSS

Description:
Draws a 4+ cross in the current window
Syntax:

(cross <x> <y> [<thickness> [<length>]])

Input:

PUY x> <y> the coordinates for the center of the cross
<thickness> the width of the lines in pixels, the default level is 1
<length> length in pixels from the center of the cross to the end,

the default value is 5
SCROSS
Description:

Draws a x cross in the current window
Syntax:

(scross <x> <y> [<thickness> [<length>]])

Input:

P <x> <y> the coordinates for the center of the cross
<thickness> the width of the lines in pixels, the default level is 1
<length> length in pixels from the center of the cross to the end,

the default value is 5
COLOR
Description:

Sets the color
Syntax:

(color <color-name>)
Input

‘<color-name> name of the color, possible colors: white, black, red,
green, blue,yellow, magenta, cyan

16

TEXT

Description:

Prints a text in the current window
Syntax:

(text <string> [<x> <y>])
IHPUt:<string> text to be printed
<x> <y> coordinate of the lower left corner of the text,default

value (1,10) that is the text appears in the upper left
corner

Asserted fact:

cursor get <point.x> <point.y>

CURSOR

Description:

Gets the cursor coordinates
Syntax:

(cursor)
Asserted fact:

(cursor get <point.x> <point.y>)

5.2 Image Functions

IMAGE-READ

Description:
reads an image
Syntax:
(image-read <filename>)

Input:) . . .
<filename> file in which the image is kept

Output:

17

<symb-name> of the read image
Asserted fact:

(image <file-name> <iname>)

IMAGE-WRITE

Description:

writes an image
Syntax:

(image-write <imagename> <filename>)
Input:

<imagename> pointer which points to the image
<filename> file in which the image will be stored

IMAGE-DISPLAY

Description:
displays an image in the current window
Syntax:

(image-display <imagepointer> [<x> <y>)

Input:
<imagepointer> pointer to the image that will be displayed
<x> default value 0
<y> default value 0

IMAGE-CREATE

Description:

creates an image
Syntax:

(image-create [<size> [<grayvalue>]])
I]aput:<size> size of the image created, sizexsize

<grayvalue> gray level of the created image, the default value is 0,
that is a black image

Asserted fact:

(image of size <size> created <symb-new-image>)

18

5.3 Miscellaneous Functions

operations applied to the image

IMAGE-CONTRAST

Description:
stretches the gray values of an image between 0 and 255
Syntax:

(image-contrast <img-id> [<min> <max> [<inverse>]])

Input.< img-id> the reference of the image (usually its pointer)
<min> The minimum (default 255) and
<max> the maximum default 0) values used for the stretching
values
<inverse> used for a permutation of black and white pixels, de-
fault 0

Asserted fact:

(image contrasted <img-id> <img-id-computed>)

IMAGE-DIFF

Description:
Computes the difference between two images
Syntax:
(image-diff <img-id1l> <img-id2>)
Input:
<img-id1> <img-id2> the references of the two images (usually their pointer)
Asserted fact:

(image difference <img-id1> <img-id2> <img-id-computed>)

IMAGE-EXTRACT

Description:
extracts a rectangular part of an image

Syntax:

19

(image-extract <img-id> <x0> <y0> <x1> <y1> [<border>
<border-value>])

Input:
<img-id> the reference of the image (usually its pointer)
<x0> <y0> the coordinates of the upper left
<x1> <yi> and the lower right corners of the rectangular part
<border> if <border> equals to 1,these parameters are used

<border-value> to mark the border of this rectangular part with a line
of gray level <border-value>

Asserted fact:

(image extracted <img-id1> <img-id-computed>)

IMAGE-INFO

Description:

Compute statistics (minimum, maximum. average and standard deviation)
of the gray values of an image

Syntax:

(image-info <img-id> [<dx> <dy> 1)
Input: . .) . .
<img-id> the reference of the image (usually its pointer)

<dx> <dy> the size of the image ; the default values are set to the
whole image

Asserted fact:

(image info <img-id1> <min> <max> <average> <standard deviation>)

IMAGE-MINMAX

Description:

Computes the location and the value of the minimum and maximum pixel
value of an image

Syntax:

(image-minmax <img-id> [<x> <y> 1)
Input: . .) . .
<img-id> the reference of the image (usually its pointer)

<dx> <dy> the size of the image ; the default values are set to the
whole image

20

Asserted fact:

(image minmax <img-id> max <max> at <x-max> <y-max> min <min>
at <x-min> <y-min>)

IMAGE-MAGNITUDE

Description:

Computes the gradient magnitude of an image
Syntax:

(image-magnitude <img-id>)

Input:
P <img-id> the reference of the image (usually its pointer)

Asserted fact:

(image magnitude <img-id> <img-id-computed>)

IMAGE-MAGNITUDE1

Description:
filtering with —101
Syntax:
(image-magnitudel <img-id>)

Input:
<img-id> the reference of the image (usually its pointer)

Asserted fact:

(image magnitudel <img-id> <img-id-computed>)

IMAGE-MAGNITUDE2

Description:

filtering with —11 in diagonal direction
Syntax:

(image-magnitude2 <img-id>)

Input:
<img-id> the reference of the image (usually its pointer)

21

Asserted fact:

(image magnitude2 <img-id> <img-id-computed>)

IMAGE-MAGNITUDEJ3

Description:

filtering with —101 in diagonal direction
Syntax:

(image-magnitude3d <img-id>)

Input:
P <img-id> the reference of the image (usually its pointer)

Asserted fact:

(image magnitude3 <img-id> <img-id-computed>)

IMAGE-LAPLACIAN

Description:

Computes the second derivative (laplacian) of an image. The values of the
laplacian are multiplied by 8, to obtain a more powerful laplacian image

Syntax:
(image-laplacian <img-id>)

Input:
<img-id> the reference of the image (usually its pointer)

Asserted fact:

(image laplacian <img-id> <img-id-computed>)

IMAGE-NORMALIZED-LAPLACIAN

Description:

Computes the second derivative (laplacian) of an image
Syntax:

(image-normalized-laplacian <img-id>)

Input:
<img-id> the reference of the image (usually its pointer)

22

Asserted fact:

(image normalized laplacian <img-id> <img-id-computed>)

IMAGE-EXPAND

Description:

Expands the size of an image
Syntax:

(image-expand <img-id> [<scale>])
Input: . .) . .
<img-id> the reference of the image (usually its pointer)
<scale> (integer) the value of the scale expansion. The default

value is such that the expanded image is the biggest
image whose size is smaller than 512x512

Asserted fact:

(image expand <img-id> <img-id-computed>)

IMAGE-BLACK-SUM

Description:

Computes a kind of average image between two images: for each pixel lo-
cation, the blackest pixel is used for the resulting image

Syntax:
(image-black-sum <img-idl> <img-id2>)
Input:
<img-id1> <img-id2> the references of the two images (usually their pointer)
Asserted fact:

(image black-sum <img-id1> <img-id2> <img-id-computed>)

IMAGE-MAXLOCAL

Description:

Computes the local maxima of an image. A local maximum is defined by
its immediate neighbourhood (8 pixels)

23

Syntax:
(image-maxlocal <img-id> [<x0> <y0> <x1> <yi1> 1)

Input:< img-id> the reference of the image (usually its pointer)
<x0> <y0> the coordinates of the part of the image where we want

to compute the local maxima.
<x1> <y1> The default values are such that the computation is

done on the whole image

Asserted fact:

(image maxlocal <img-id> <img-id-computed>)

IMAGE-SMAXLOCAL

Description:

Computes the local maxima of an image. A local maximum is defined by
its immediate neighbourhood (8 pixels)

Syntax:
(image-smaxlocal <img-id> [<x0> <y0> <x1> <yi>])

Input:< img-id> the reference of the image (usually its pointer)
<x0> <y0> the coordinates of the part of the image where we want

to compute the local maxima.
<x1> <y1> The default values are such that the computation is

done on the whole image

Asserted fact:

(image maxlocal <img-id> <img-id-computed>)

IMAGE-THRESH

Description:

thresholds an image. Each pixel whose gray value is lower than the thresh
is set to 0. The others pixels are left unchanged

Syntax:

(image-thresh <img-id> [<threshold-value>[<dx> <dy>]])

Input:
<img-id> the reference of the image (usually its pointer)
<threshold-value> the value of the threshold. The default value is 128
<dx> <dy> region of interest

24

Asserted fact:

(image threshed <img-id> <img-id-computed>)

IMAGE-SIZE

Description:

Computes the sizes of an image
Syntax:

(image-size <img-id>)

Input:
<img-id> the reference of the image (usually its pointer)

Asserted fact:

(image size <x-min> <x-max> <y-min> <y-max>)

IMAGE-SIZE-MIN-X

Description:

Computes the most left location of the pixels of an image. That is the
minimum row index.

Syntax:
(image-size-min-x <img-id>)

Input: = : L
<img-id> the reference of the image (usually its pointer)

Output:

the most left value of the pixels of this image

IMAGE-SIZE-MAX-X

Description:

Computes the most right location of the pixels of an image.That is the
maximum row index.

Syntax:
(image-size-max-x <img-id>)

Input:
25

<img-id> the reference of the image (usually its pointer)
Output:

the most right value of the pixels of this image

IMAGE-SIZE-MIN-Y

Description:

Computes the upper most location of the pixels of an image. That is the
minimum column index.

Syntax:
(image-size-min-y <img-id>)

Input:
P <img-id> the reference of the image (usually its pointer)

Output:

the upper most value of the pixels of this image

IMAGE-SIZE-MAX-Y

Description:

Computes the lowest location of the pixels of an image. That is the maxi-
mum column index

Syntax:
(image-size-max-y <img-id>)

Input:
P <img-id> the reference of the image (usually its pointer)

Output:

the lowest value of the pixels of this image

IMAGE-SIZE-X

Description:
Compute the size of the rows of an image
Syntax:

(image-size-x <img-id>)

26

Input:
P <img-id> the reference of the image (usually its pointer)

Output:

the length of the rows of this image

IMAGE-SIZE-Y

Description:

Compute the size of the columns of an image
Syntax:

(image-size-y <img-id>)

Input:
<img-id> the reference of the image (usually its pointer)

Output:

the length of the columns of this image

IMAGE-SEARCHBLACK

Description:

computes the location of the gravity center as well as the number of points
of the biggest black region of an image

Syntax:
(image-searchblack <img-id>)

Input:
<img-id> the reference of the image (usually its pointer)

Asserted fact:

(bary searchblacked <img-id> <x-location> <y-location> <nb-points>)

IMAGE-GET-PIXEL

Description:
Gets the gray value of a pixel of an image
Syntax:

(image-get-pixel <img-id> <x> <y>)

27

Input:
P <img-id> the reference of the image (usually its pointer)
<x> <y> the location of the pixel

Output:

the gray value of this pixel

IMAGE-SET-PIXEL

Description:

Sets the gray value of a pixel of an image
Syntax:

(image-set-pixel <img-id> <x> <y>)
Input:

<img-id> the reference of the image (usually its pointer)
<x> <y> the location of the pixel

IMAGE-SEUIL

Description:

Marks all the pixels of the image whose gray value is between two values
Syntax:

(image-seuil <img-id> <g0> <gi>)
Input:

<img-id> the reference of the image (usually its pointer)
<g0> <gl> the two values

IMAGE-ISO

Description:

Marks all the pixels of an image whose gray values is equal to a value
Syntax:

(image-iso <img-id> <value>)
Input

‘<img-id> the reference of the image (usually its pointer)
<value> the searched value

28

IMAGE-FREE

Description:

de-allocates the memory used for an image
Syntax:

(image-free <img-id>)

Input: . L
<img-id> the reference of the image (usually its pointer)

Asserted fact:

(image free <img-id>)

IMAGE-G3

Description:

Computes a low pass filtered image of an image using the gaussian filter g3
Syntax:

(image-g3 <img-id>)

Input: : Lo
<img-id> the reference of the image (usually its pointer)

Asserted fact:

(image g3 <img-id> <img-id-computed>)

IMAGE-GH

Description:

Computes a low pass filtered image of an image using the gaussian filter gb
Syntax:

(image-gb <img-id>)

Input: : L
<img-id> the reference of the image (usually its pointer)

Asserted fact:

(image gh <img-id> <img-id-computed>)

29

IMAGE-G7

Description:

Computes a low pass filtered image of an image using the gaussian filter g7
Syntax:

(image-g7 <img-id>)

Input: : Lo
<img-id> the reference of the image (usually its pointer)

Asserted fact:

(image g7 <img-id> <img-id-computed>)

IMAGE-G13

Description:

Computes a low pass filtered image of an image using the gaussian filter
g13

Syntax:
(image-g13 <img-id>)

Input: : L
<img-id> the reference of the image (usually its pointer)

Asserted fact:

(image g13 <img-id> <img-id-computed>)

IMAGE-THIN

Description:
777
Syntax:
(image-thin <image-name>)
Input:
<imgage-name> the reference of the image (usually its pointer)

Asserted fact:

30

(image thined <img-name> <symb-new-image>)

IMAGE-ADAPT-THRESH

Description:
77
Syntax:

(image-adapt-thresh <image-name> [<size> <fact-sigma>
<thresh>])

Input:
<imgage-name> the reference of the image (usually its pointer)
<size> 777
<fact-sigma> 777
<thresh> 77

Asserted fact:

(image adapted thresh <img-name> <symb-new-image>)

IMAGE-ADAPT-THRESH2

Description:
77
Syntax:
(image-adapt-thresh2 <image-name> [<size> <fact-sigma>
<thresh>)]
Input:
<imgage-name> the reference of the image (usually its pointer)
<size> 777, default 4
<fact-sigma> 777, default 1.5
<thresh> 777, default 20

Asserted fact:

(image adapted thresh2 <img-name> <symb-new-image>)

IMAGE-INFO-DIFF

Description:

31

77
Syntax:
(image-info-diff <image-namel> <image-name2>)

Input:

<imgage-namel> the reference of the first image (usually its pointer)
<imgage-name2> the reference of the second image (usually its pointer)

Asserted fact:

(diff info <img-namel> <img-name2> max <max> moy <moyenne> ecart
<ecart>)

IMAGE-MAGNITUDE4

Description:

Computes the gradient magnitude of an image (Canny/Dericke)
Syntax:

(image-magnitude4 <img-id>)

Input:
P <img-id> the reference of the image (usually its pointer)

Asserted fact:

(image magnitude4 <img-id> <img-id-computed> high <uptresh> low
<lowthresh>)

IMAGE-DIFF-ABSOLU

Description:
77
Syntax:
(image-diff-absolu <image-namel> <image-name2>)

Input:

<imgage-namel> the reference of the first image (usually its pointer)
<imgage-name2> the reference of the second image (usually its pointer)

Asserted fact:
(absolute image difference <img-namel> <img-name2> <symb-new-

image>)

32

IMAGE-ADD-NOISE-UNIFORME

Description:
777
Syntax:
(image-add-noise-uniforme <image-name> [<scale>])

Input:

<imgage-name> the reference of the image (usually its pointer)
<scale> default 1

Asserted fact:

(image <img-name> uniforme noisy image <symb-new-image>)

IMAGE-ADD-NOISE-GAUSSIAN

Description:

777
Syntax:

(image-add-noise-gaussian <image-name> [<mean> <sigma>])

Input:
<imgage-name> the reference of the image (usually its pointer)
<mean> default 0
<sigma> default 1

Asserted fact:
(image <img-name> gaussian noisy image <symb-new-image>)

5.4 Corner Functions

a list of corners has as first argument the number n of corners contained in the list,
then follow the n corners

CORNER-DISPLAY

Description:

Displays a list of corners

33

Syntax:
(corner-display <cornerlist>)

Input:
P <cornerlist> the list of corners to be displayed

CORNER-NBR

Description:

Returns the number of corners of a list
Syntax:

(corner-nbr <cornerlist>)
Input

‘<cornerlist> the list of corners for which we want to know the num-
ber of corners

Output:

<nbr>, number of corners

CORNER-CREATE

Description:

Creates a list of corners
Syntax:

(corner-create <number>)

Input:
P <number> the number of corners in the created list

Asserted fact:

list of corners created <corners>

CORNER-SET

Description:
Set a corners in a list
Syntax:
(corner-set <cornerlist><i><x><y>)

Input:
34

<cornerlist> the list of corners in which the corner is set
<i> the number of the corner to be set
<x>,<y> the x and y values of the corner

CORNER-NTH-X

Description:
Returns the x-value of a corner in a list
Syntax:

(corner-nth-x <cornerlist><i>)

Input:
P <cornerlist> the list of corners
<i> the number of the corner in the list
Output:

<x> coordinate of the ith corner>

CORNER-NTH-Y

Description:
Returns the y-value of a corner in a list
Syntax:

(corner-nth-y <cornerlist><i>)

Input:
P <cornerlist> the list of corners
<i> the number of the corner in the list
Output:

<y> coordinate of the ith corner>

CORNER-READ

Description:

Reads a list of corners to a file
Syntax:

(corner-read <filename>>)

Input:
35

<filename> the file from which the corners are read
Asserted fact:

(list of corners <file-name> <corners>)

CORNER-WRITE

Description:
Writes a list of corners to a file
Syntax:
(corner-write <cornerlist> <filename>)

Input:

<cornerliste> the list of corners
<filename> file to which we want to write the list of corners

CORNER-EXTRACT

Description:
extracts corners from a list of corners
Syntax:

(corner-extract <cormerliste> <x1> <yl1> <x2> <y2>)

Input:
P <cornerlist> the list of corners from which we extract
<x1> <y1> coordinates for the beginning of the extraction
<x2> <y2> coordinates for the end of the extraction

Asserted fact:

(corners extracts <cornersname> <corners-out>)

CORNER-EXPAND

Description:
expands a list of corners
Syntax:
(corner-expand <cornerliste> <factor>)

Input:
36

<cornerliste> the list of corners from which we expand
<factor> the expansion factor

Asserted fact:

(corners expanded <cornersname> <corners-out>)

CORNER-DIFF

Description:
Computes the difference between two lists of corners
Syntax:
(corner-diff <cornerlistl> <cornerlist2> [<thresh>])

Input:

<cornerlist1l> the first list of corners

<cornerlist2> the second list of corners

<thresh> metric distance for which two corners are the same,
default value 0

Asserted fact:

(corner difference <namel> <name2> <result>)

CORNER-INTERSECT

Description:
Computes the intersection between two lists of corners
Syntax:
(corner-intersect <cornerlistl> <cornerlist2> [<thresh>])

Input:

<cornerlistel> the first list of corners

<cornerliste2> the second list of corners

<thresh> metric distance for which two corners are the same,
default value 0

Output:
<nbr>, number of corners, which found in both lists
Asserted fact:

(corner intersection <namel> <name2> <result>)

37

CORNER-ZURICH

Description:
Computes corners of an image using function zurich
Syntax:

(corner-zurich <imagpointer> [<sigma> <sweep> <thresh>
<nori> <orisel>])

Input:

<imagepointer> poitner to the image for which the corners are com-
puted

<sigma> sigma of the gaussian envelope, default value 5.0
<sweep> sweep parameter of the egabor filter, default value 1.2
<thresh> thresh, default value 10.0
<nori> number of orientations, default value 6
<orisel> orientation selectivity, default value 4.0

Asserted fact:

(zurich image <image-name> corners <corners-out>)

CORNER-ZURICH-RAW

Description:
Computes corners of an image using function zurich
Syntax:

(corner-zurich-raw <imag-name> [<sigma> <sweep> <thresh>
<nori> <orisel>])

Input:

<imagepointer> poitner to the image for which the corners are com-
puted

<sigma> sigma of the gaussian envelope, default value 5.0
<sweep> sweep parameter of the egabor filter, default value 1.2
<thresh> thresh, default value 10.0
<nori> number of orientations, default value 6
<orisel> orientation selectivity, default value 4.0

Asserted fact:

(zurich image <image-name> image-out<bary-img-out> corners <corners-
out>)

38

CORNER-ZURICH1

Description:
Computes corners of an image using function zurichl
Syntax:

(corner-zurichl <imagepointer> [<sigma> <sweep> <thresh>
<nori> <orisel>])

Input:

<imagepointer> pointer to the image for which the corners are com-
puted

<sigma> sigma of the gaussian envelope, default value 5.0
<sweep> sweep parameter of the egabor filter, default value 1.2
<thresh> thresh, default value 10.0
<nori> number of orientations, default value 6
<orisel> orientation selectivity, default value 4.0

Asserted fact:

(image <image-name> kptimage <bary-img-out>filtered images <filtered-
images> corners <corners-out>)

CORNER-DROID

Description:
Computes corners of an image using function droid
Syntax:

(corner-droid <imagpointer> [<sigma> <relminimum>
<scalefactor>])

Input:
<imagepointer> pointer to the image for which the corners are com-
puted
<sigma> sigma, default value 2.5
<relminimum> relative minimum, default value 0.01

<scalefactor> scalefactor, default value 0.06
Asserted fact:

(droid image < img-name> corners <corner>)

39

CORNER-BEAUDET

Description:
Computes corners of an image using function beaudet
Syntax:

(corner-beaudet <imagpointer> [<thresh>])

Input:
<imagepointer> poitner to the image for which the corners are com-
puted
<thresh> thresh, default value 0.6

Asserted fact:

beaudet image <image-name> corners <corner>)

CORNER-FOERSTNER

Description:

7?77 Computes corners of an image using function foerstner
Syntax:

(corner-foerstner <imagpointer>)

Input:

<imagepointer> poitner to the image for which the corners are com-
puted

Asserted fact:

foerstner image <image-name> corners <corner>)

CORNER-REGRESSION

Description:

777
Syntax:

(corner-regression <imagpointer>)

Input:

40

<imagepointer> poitner to the image for which the corners are com-
puted

Asserted fact:

linear regression points <corners-name> <a> <c> residual <sr2>)

CORNER-DETECT-CLOUD

Description:
Computes a cloud image from a corner image
Syntax:

(corner-detect-cloud <cornerimage> [<dist> <nbrpoints>])

Input:
<cornerimage> image of the corners
<dist> size of a cloud, default value 4
<nbrpoints> number of points which have to be in a cloud, default
value 1

Asserted fact:

(image <image-name> cloud corners jcorners-out)

CORNER-PRECISE

Description:
Computes the precise corner
Syntax:

(corner-precise <image> <x> <y> [<dx> <dy> <type>]

Input:
P <image> image for which the corners were computed and which
is used to precise them
<x>,<y> x and y coordinates of the corner

<dx>,<dy> dx and dy are size of the approximation area in x and

y direction, default values are 20, 20
<type> type of the corner, default value is ¢

Asserted fact:

(corner <corner-in.x> <corner-in.y> precise <corner-out.x> <corner-
out.y> theta <theta> beta <beta> [beta2 <beta2> error <error>])

41

5.5 Contour Functions

CONTOUR-EXTRACT

Description:
extracts point-chains out of a gradient-image
Syntax:

(contour-extract <imagename> [<up-tresh> <down-thresh>
<chainlength> [<max-nbr-chains>]])

Input:

<imagename> Pointer of the gradient-image

<up-thres> maximum accepted distance from a point belonging to
the chain, default value is 1

<down-thres> minimum accepted distance from a point belonging to
the chain, default value is 1

<chainlength> minimumlength of a saved chain, default value is 5

<max-nbr-chains> maximum-number of saved chains, default value is
10000

Asserted fact:

(image <image-name> chains in <symb-new-chains>)

CONTOUR-IMAGE

Description:

shows in a new window the chains on the screen (creates a new black/white
image)

Syntax:

(contour-image <chain-name>[<dx> <dy>])

Input:<chain—name> pointer to the chainlist
<dx> width of the new image, default value is 512
<dy> high of the new image, default value is 512

Asserted fact:

(chain <chain-name> contour image <symb-new-image>)

CONTOUR-DISPLAY

Description:

42

shows in the original image the chains on the screen
Syntax:
(contour-display <chain-name>)

IHPUt:<chain—name> Pointer to displayed chain

5.6 Calibration Functions

CALIB-RECONSTRUCTION

Description:
calculates the 3-D coordinates of a point (uses line/plane intersection)
Syntax:

(calib-reconstruction <matrixL-name> <matrixR-name> <PL.i>
<PL.j> <PR.i> <PR.j>)
Input:

<matrixL-name> left image of the scene
<matrixR-name> right image of the scene

<PL.i> x-coordinate of the point in the left image
<PL.j> y-coordinate of the point in the left image
<PR.i> x-coordinate of the point in the right image
<PR.j> y-coordinate of the point in the right image

Asserted fact:

(point reconstruit <result.x> <result.y> <result.z>)

CALIB-RECONSTRUCTION-LINES

Description:
calculates the 3-D coordinates of a point (uses line/line intersection)
Syntax:

(calib-reconstruction-lines <matrixL-name> <matrixR-name>
<PL.i> <PL.j> <PR.i> <PR.j>)
Input:

<matrixL-name> left image of the scene
<matrixR-name> right image of the scene

<PL.i> x-coordinate of the point in the left image
<PL.j> y-coordinate of the point in the left image
<PR.i> x-coordinate of the point in the right image
<PR.j> y-coordinate of the point in the right image

43

Output:
(x, v, z), the coordinates of the point in the 3-D scene
Asserted fact:

(point reconstruit <result.x> <result.y> <result.z>)

5.7 Histogram Functions

IMAGE-HISTOGRAMME

Description:

calculates the histogramme of an image
Syntax:

(image-histogramme <image-name>)
Input

< image-name> Pointer to the image, of which the histogramme should
be calculated

Asserted fact:

(histogramme from <image-name> <histograme>)

HISTOGRAMME-DISPLAY

Description:

shows the histogramme on the screen
Syntax:

(histogramme-display <histo-name>)

Input: . . .
<histo-name> Pointer to the histogramme

HISTOGRAMME-DISPLAY-LOG

Description:

shows the histogramme after using the logarithm-function
Syntax:

(histogramme-display-log <histo-name>)

Input:
44

<histo-name> pointer to the histogramme

HISTOGRAMME-DISPLAY 2

Description:
777
Syntax:
(histogramme-display2 <histo-name>)

Input: . . .
<histo-name> Pointer to the histogramme

HISTOGRAMME-DISPLAY2-LOG

Description:
77
Syntax:
(histogramme-display2-log <histo-name>)

Input: . . .
<histo-name> Pointer to the histogramme

HISTOGRAMME-GET

Description:
gets the frequency-value of a histogramme for a given grayvalue
Syntax:

(histogramme-get [<histo-name> [<int>]])

I t: . .
UPUY pisto-name> Pointer to the histogramme
<int> the given grayvalue
Output:

returns the value of the histogram

HISTOGRAMME-SET

Description:

45

sets frequency-value for a graylevel in a histogramme
Syntax:

(histogramme-set [<histo-name> [<i> <j>]1)

1 t: . .
UPUY pisto-name> Pointer to the histogramme
<i> concerned grayvalue
<j> new value of the frequency

HISTOGRAMME-ADD

Description:
adds two histogrammes
Syntax:
(histogramme-add <histo-namel> <histo-name2>)

Input:

<histo-namel> Pointer to the first histogramme
<histo-name2> Pointer to the second histogramme

Asserted fact:

(add histogrammes <histonamel> <histoname2> <histo-sum>

HISTOGRAMME-WRITE

Description:

saves a histogramme to a file
Syntax:

(histogramme-write <histo-name> <file-name>)
Input:

‘<histo-name> Pointer to the histogramme
<file-name> name of the file

5.8 Line Functions

LINE-DISPLAY

Description:

displays a line on the screen

46

Syntax:

(line-display [<theta> <rho>][<a> <c>])
Input:)
<theta> angle between the line and the x-axe
<rho> distance of the line to (0, 0)
<a> the line is determined with az + by + ¢ =0

<c>

LINE-PRECISE

Description:
looks for a segment (line) near the given coordinates
Syntax:

(line-precise<image-name> <x> <y> [<dx> <dy> <type>
[<pl> <p2>11)

Input: . . .
<image-name> pointer to the concerned image
<x> x-coordinate of the point
<y> y-coordinate of the point
<dx> position of region of interest
<dy> position of region of interest
<type> e, for edge
<pl> initial estimation for theta
<p2> initial estimation for rho

Asserted fact:

(edge <x> <y> precise <theta> <roh.new> error <error>)

LINE-CHECK

Description:

computes how much percent of an amount of points,lying in the near envi-
ronment of a line

Syntax:

(l1ine-check <image-name> <x0> <y0> <x1> <yl> <size>
<corners-name>)

Input:

47

<image-name> pointer to the considered image

<x0> x-coordinate of the beginningpoint of the line
<y0> y-coordinate of the beginningpoint of the line
<x1> x-coordinate of the endingpoint of the line
<yi> y-coordinate of the endingpoint of the line
<size> maximum distance of the line to the points

<corners-name> list of the points
Output:

< percent>

5.9 Mathematical Functions

RAND

Description:

calculates a random number
Syntax:

(rand <seed>)

Input: .
<seed> startvalue for the calculation

Output:

returns a randomnumber

SRAND

Description:

calculates a random number
Syntax:

(srand <seed>)

Input: .
<seed> startvalue for the calculation

Output:

returns a randomnumber

48

RANDOM

Description:

calculates a random number
Syntax:

(random <seed>)

Input:
P <seed> startvalue for the calculation

Output:

returns a randomnumber

SRANDOM

Description:

calculates a random number
Syntax:

(srandom <seed>)

Input:
P <seed> startvalue for the calculation

Output:

returns a randomnumber

5.10 Matrix Functions

MATRIX-ALLOC

Description:

allocates memory for a matrix with ”n-rows” rows and ”n-cols” cols
Syntax:

(matrix-alloc <n-row> <n-col>)
Input:

<n-rows> number of the needed rows
<n-cols> number of the needed cols

Asserted fact:

49

(matrix "memory” <result> <n-rows> <n-cols>)

MATRIX-ZERO

Description:
initialzes a matrix with 0
Syntax:

(matrix-zero <matrix-id> <n-row> <n-col>)

Input:
<matrix-id> Pointer to matrix
<n-rows> number of the rows
<n-cols> number of the cols

MATRIX-READ

Description:
reads a matrix from a file
Syntax:

(matrix-read <matrix-name> <n-row> <n-col>)

Input:
<matrix-name> name of the file
<n-rows> number of the rows
<n-cols> number of the cols

Asserted fact:

matrix <matrix-name> <result> <n-row> <n-col>)

MATRIX-FREE

Description:

deallocates the memory of the matrix
Syntax:

(matrix-free <matrix-id> <n-row>)
Input

‘<matrix-id> pointer to the matrix
<n-rows> number of the rows

50

MATRIX-MULT

Description:
multiplicates two matrices
Syntax:

(matrix-read <matrixl-id> <nl-row> <nl-col> <matrix2-id>
<n2-row> <n2-col>)

Input:
<matrixl-id> pointer to the first matrix
<nl-rows> number of the rows of the first matrix
<nl-cols> number of the cols of the first matrix
<matrix2-id> pointer to the second matrix
<n2-rows> number of the rows of the second matrix
<n2-cols> number of the cols of the second matrix

Asserted fact:

(matrix "memory” <result> <nl-row> <n2-col> <matrix1-id> <matrix2-

id>)

MATRIX-PRINT

Description:
shows a matrix on the screen
Syntax:

(matrix-print <matrix-id> <n-row> <n-col>)

Input:
<matrix-id> pointer to the matrix
<n-rows> number of the rows
<n-cols> number of the cols

MATRIX-SET

Description:
sets a value of a matrix at the position (n-row, ncol)
Syntax:
(matrix-set <matrix-id> <n-row> <n-col> <value>)

Input:
51

<matrix-id> pointer to the matrix

<n-rows> x-coordinate of the new value
<n-cols> y-coordinate of the new value
<value> the new set value

MATRIX-GET

Description:
gets a value of a matrix at the position (n-row, ncol)
Syntax:

(matrix-print <matrix-id> <n-row> <n-col>)

Input:
<matrix-id> pointer to the matrix
<n-rows> number of the rows
<n-cols> number of the cols

Output:

returns the value

5.11 Pyramid Functions

PYRAMID-COMPUTE

Description:

Computes the pyramid of resolution of an image
Syntax:

(pyramid-compute <imagepointer>)

Input:

<imagepointer> pointer to the image for which the pyramid is com-
puted

Asserted fact:

(image <image-name> pyramid <pyr>)

52

5.12 Sequence Functions

SEQUENCE-EXTRACT

Description:
Extracts the nth image in a list of images
Syntax:
(sequence-extract <sequencepointer> <level>)

Input:

<sequencepointer> pointer to the list of images
<level> the levelth image is extracted

Asserted fact:

(image <pyr-name> niveau <niveau> <pyr>)

53

Index

calib-reconstruction, 44 histogramme-display2, 46
calib-reconstruction-lines, 45 histogramme-display2-log, 47
CLIPS, 4 histogramme-get, 47

color, 17 histogramme-set, 47
contour-display, 44 histogramme-write, 48

contour-extract, 43
contour-image, 44

corner-beaudet, 41
corner-create, 35

corner-detect-cloud, 42
corner-diff, 38 image-black-sum, 24

image-contrast, 19
image-create, 19
image-diff, 20
image-diff-absolu, 34
image-display, 19
image-expand, 24
image-extract, 20
image-free, 30
image-gl13, 31

image-adapt-thresh, 32
image-adapt-thresh2, 32
image-add-noise-gaussian, 34
image-add-noise-uniforme, 34

corner-display, 35
corner-droid, 41
corner-expand, 38
corner-extract, 37
corner-foerstner, 41
corner-intersect, 39
corner-nbr, 35
corner-nth-x, 36
corner-nth-y, 36

corner-precise, 43 %mage—gS, 30
corner-read, 37 }mage—gfi, 31
corner-regression, 42 image-g7, 31

image-get-pixel, 29
image-histogramme, 45
image-info, 21
image-info-diff, 33
image-iso, 30
image-laplacian, 23

corner-set, 36
corner-write, 37
corner-zurich, 39
corner-zurich-raw, 40
corner-zurich1, 40

cross, 16
cursor, 18 image-magnitude, 21
image-magnitudel, 22
DCL_..., 10, 11 image-magnitude2, 22
debug-link, 13 image-magnitude3, 22
def-file, 5 image-magnitude4, 33
DefineFunction, 5 image-maxlocal, 24
Dld, 9 image-minmax, 21
image-normalized-laplacian, 23
FSF, 9 image-read, 18
cet .. 7 %mage—searc'hblack, 28
get_image, 7 }m:che—set—‘plxel7 29
image-seuil, 29
histogramme-add, 48 image-size, 26
histogramme-display, 46 image-size-max-x, 26
histogramme-display-log, 46 image-size-max-y, 27

54

image-size-min-x, 26
image-size-min-y, 27
image-size-x, 27
image-size-y, 28
image-smaxlocal, 25
image-thin, 32
image-thresh, 25
image-write, 18

libglobalclips.a, 7
line, 16
line-check, 49
line-display, 48
line-precise, 49
link-obj, 11

matrix-alloc, 51
matrix-free, 52
matrix-get, 54
matrix-mult, 52
matrix-print, 53
matrix-read, 52
matrix-set, 53
matrix-zero, 51

new_symb_..., 7

plot, 16
put_..., 7
pyramid-compute, 54

rand, 50
random, 50
Ravi, 13

remove._..., 7

scross, 17
sequence-extract, H4
shared module, 5
shared.o, 5

srand, 50

srandom, 51

sybol table, 7

text, 17
unlink-obj, 11

window-change, 15

55

window-clear, 15
window-close, 15
window-create, 14

