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Abstract

The evaluation of wvision systems is not possible
without parameter control as incorrect parameter ad-
Justment can cause performance losses that are more
significant than the effect of the component being
tested. In this paper we present a model for the con-
tour extraction process and derive from it a method
for automatic parameter control. The method works
with arbitrary edge detectors, edge types and noise
types. Experimental data on the methods performance
and its accuracy is given.

1 Introduction

The science of computer vision today is characterized
by a great variety of techniques for which few com-
parative and even less quantitative analysis exists. In
recent years, a trend towards more quantitative per-
formance analysis of vision processes is visible [1] [2].
However, much progress is to be made.

One of the main reasons for the absence of perform-
ance evaluation is that it requires a valid evaluation
criteria and correct parameter tuning of the free para-
meters of the vision system. On both topics little lit-
erature exists.

Evaluation in computer vision literature often con-
sists of presenting the results of the algorithm on a few
example images. Quantitative evaluation criterion are
seldomly used and not standardized.

Parameter tuning in computer vision is usually
done by hand. Few schemes for the automatic tuning
of parameters exist. This is surprising, as automatic
parameter control is necessary not only for the eval-
uation of vision systems but also for their industrial
application.

The effect of the wrong parameter tuning can be
stronger than the effect of the component that we de-
sire to test. Evaluation in computer vision therefore
requires:
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e The definition of an evaluation function. This is
needed to give a user the possibility to compare
results as well as to define a criteria for optimal
parameter tuning.

e A method to automatically adjust the free para-
meters of the vision system. This has to include
an estimation of the error caused by imperfect
parameter tuning. This is necessary in order to
determine whether the obtained results were valid
or if they might be due only to incorrect para-
meter tuning.

In this paper we present a performance evluation
method for contour extraction systems. Unlike previ-
ous puplications [3] our method is applicable for arbit-
ary edge types, edge detectors and noise types. The
evaluation scheme includes a model for the qualitat-
ive prediction of the performance of a vision algorithm
and the automatic tuning of parameters which can be
used independently.

We first present out evaluation criteria and then
review the general problem of parameter tuning. In
section 4 we describe the model we use, the way we de-
termine the parameters of the model and how a qual-
itative performance prediction can be derived from
the model. We finally present extensive experimental
data verifying the validity of the model.

2 Performance Evaluation

The performance criteria of any vision system or any
component thereof can only be specified in a task spe-
cific context. We assume that the contours are used
for further feature detection. Performance evaluation
is actually necessary for two purposes.

First, to give the vision engineer a criteria by which
he is able to compare algorithms and to decide which
algorithm is suitable for a particular application. In
this case the evaluation should characterize all proper-



ties of the output that might be interesting for further
use.

Second, to allow parameter tuning. For the para-
meter tuning algorithm a scalar error criteria has to be
specified which the algorithm then attempts to min-
imize.

For further use of the extracted chains we propose
the following evaluation criteria:

e The Detection rate. The number of pixels be-
longing to edge contours that have been correctly

1dentified.

e Error rate. The number of false alarm (noise that
has been incorrectly detected as contour points).

e Localization. The deviation of the contour from
their real position. We characetrize it by the his-
togram of the deviation. This is especially im-
portant if segment extraction is to be performed
later.

e Breaks. Independently of the number of contour
points covered the contours should show few
breaks. We characterize this by the length his-
togram of the contours.

If we assume that it can be said for each detec-
ted edge pixel whether it is correctly detected, that is
whether it belongs to a real edge or 1s due to noise. We
can then define a probability for the correct detection
of contour pixels:

Nr. of Correctly detected Contour Pixels
Total Nr. of Contour Pixels 0
1

PCont =

pixels (false alarms):

Nr. of wrongly Detected Noise Pixels

(2)

PNoise = "Total Number of Pixels in the Image

In the last equation we assumed that the number
of real contour pixels is small compared to the total
number of pixels. The second quantity has to be cor-
rected if strong smoothing is used with a high signal
to noise ratio in the image. In this case the strong
response of the edge will reduce the number of noise
pixels in the vicinity of the edge.

The impact of falsely detected contours against
missed real contours depends on the application. With
A specifying a weight between these two error types
we define as an error criterion:

E:)"pCont_(l_)‘)'pNoiss (3)

This scalar evaluation criterion is minimized for the
automatic tuning of parameters. We usually set X to
0.5 weighting false alerts and undetected contours eu-
qally damaging.

3 Automatic Parameter adjust-
ment

Vision systems typically have a large number of free
parameters. So far, parameter adjustment in com-
puter vision has been mainly done manually. For the
quantitative evaluation of vision systems hand tuning
is not applicable. To guarantee reproducable results
automatic parameter selection schemes are necessary.

Using the same parameters for a comparative ana-
lysis of a class of vision system components is not the
solution. When testing several edge detectors the val-
ues of the hysteresis thresholds will have to be tuned
individually. Edge detectors with stronger smooth-
ing will produce weaker responses and require lower
thresholds.

The first step for parameter tuning is to specify an
evaluation criterion as we have done in section 2. The
minimum of this evaluation function in the parameter
space has to be found. Due to the high computational
cost associated with vision systems, it takes too long
to find this minimum by classical methods such as
gradient descent or simmulated annealing.

The only solution to this problem seems to be to
model the vision system and to use this model to pre-
dict the best settings of the parameters. Ramesh et. al.
in [4] develop a model for image features, their per-
tubations and the image extraction process and use
it for automatic parameter tuning [3]. Tt is therefore
only applicable for this particular system. We follow
a more general approach by using a model that does
not make assumptions about the features, the edge
detector or the noise. The model we present does not
have to be precise enough to allow us to predict the
results quantitatively but it must be sufficiently pre-
cise to predict the optimal parameter setting.

4 Contour Extraction Model

In this paper we are interested in contour based vision
systems. These systems use an edge detection oper-
ator and a thinning process to transfor the original
image into an edge image. From this edge image con-
tour points are extracted and gatherd into contour
chains. The vision process we want to model is depic-
ted in figure 1.
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Figure 1: The Vision System

The edge detection process is fairly well understood
today and models for their behavior in the presence
of noise exist (e.g. [5]). This is not the case for the
contour chaining process wich involves thresholding.

The model which we will use to predict the results
of the contour extraction process will not include a
model for the edges we want to detect and the noise
in the image. Instead the parameters of our model that
describe the input image are directly calculated from
the contour image produced by the edge detector. This
way we avoid restrictions on the type of noise and the
edge detector used.

The Model for our vision process contains two
things:

e A model for describing the input and output of
each step of the vision system.

e A function that models the transformation from
the input to the output for each step in the vision
system.

Each of these should be as simple as possible while
still being able to predict the final result with suffi-
cient precision. The natural approach in this case is to
start with an easy model and refine it until prediction
is precise enough.

Our model for the result of each vision step is the
length distribution of the edges. The steps of the con-
tour extraction process we model are:

e Extracting and linking chains from the image
from all points above a certain threshold T, .

e Removal of all the chains that do not have a pixel
above a certain threshold T4z .

e Removal of all chains with a length below a cer-
tain threshold Tj.,,.

The model is depicted in figure 2. First statistics
about the edge image is collected from a number of im-
ages for wich groundtruth is known. This is done sep-
arately for real contours and regionsof non-interest.
From the statistics an initial length distribution is
calucalted. On this initial distribution two threshold-
ing steps are performed.

To describe the contour characteristics after the
first extraction and linking step we will use their
length histogram. To calculate this length histogram
we present two different approches.
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Figure 2: The Contour Extraction Model

4.1 Statistical prediction of the initial
length histogram

For the distribution of edge values a simple way of
predicting the length distribution of the chains is to
measure the histogram of the edge pixel H (piz) values
along an edge. From this we can calculate the probab-
ility that an edge pixel is below our Threshold T},

as:
Toin—1

por =y H(n) (4)
n=0
Assuming that neighboring pixel values are independ-
ent we can then calculate the length distribution as:

p(l) = (] _pbr)l * Pbr (5)

The problem of this model is that the pixel val-
ues of neighboring pixels on a contour are not in-
dependent. This is especially the case if a strong
smoothing edge detector is used. The next best ap-
proximation is to believe that values are dependent
on each other but only on neighboring values. In this



case we measure a Histogram of the pixel and the
neighbor Pixel H (piz, neigbour). We normalize it to
Hp (piz, neighbor) so that the sum of each column is
one. We first calculate the intial distribution.

pstart(x) = p(O,:E) = ZH(TL,Z‘) (6)

From this we are able to calculate the edge value
distribution at a given distance from our starting
point d. We only have to sum up from 7T,,,;,, as other-
wise the chain has ended.

pld+1,2)= > Hy(z,n)-p(d,n) (7)

From this we get a length distribution:

Tmin—1

p)="3 p(ln) (8)

n=0
4.2 Direct prediction of the initial
length histogram

This model needs more data then the previous ones
but uses a direct method to calculate the initial length
distribution as well as the maxima distribution. We
first obtain the contour chain geometry as described
in section 4.4. Now we follow the chains and meas-
ure for all possible thresholds the length histogram
giving a joint length T,,,;,, histogram H(Timin,!). The
algorithm works as follows:

o Set actual length L(Tpin) to zero for all Tpp.

e Follow the chain and get actual edge pixel value
v.

e For all T, < v add one to H(Tmin, L(Tmin))
and set L(Tpnin) to zero.

e For all T,,,;,, > v add one to L(Tpn).

e Go to step 2.

From this histogram the initial length distribu-
tion can be calculated by a simple extraction op-
eration. As an additional benefit the maximum dis-
tribution can be calculated the same way if an ad-
ditional array of Max(Tain) is introduced. Each
time a new contour is added to the histogram
H(Tin,!) the maximum value of the current contour
Max(Tain) is registerd in the maximum histogram
HMa:c(Max(TMa:c);L(Tmin))-

Figure 3 shows the predicted initial length histo-
gram for contours fromr eal edges for both methods
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Figure 3: Comparison of Statistical vs. Direct Predic-
tion

and the real, empirical distribution. Each bin tells the
probability that a pixel is on a chain of this length
(which is equal of the probability of a chain of this
length multiplied with its length). Edge detection was
done using the Deriche version of the Canny edge de-
tector (o = 2.0, S/N = 2.0). It can be seen that
the statistical model without correlation is inferior to
the statistical model wiht correlation and the direct
method. The same experiment with noise gave similar
performance with direct method giving slightly better
results than than the statistical model wiht correla-
tion. For further experimants we will use the direct
method.

4.3 Calculating the Model Results

The maximum and length thresholding are now
straightforward. It is the same for edge contours and
noise contours. The probability for each length is mul-
tiplied with the probability of a segment of this length
having a maximum of at least Thrqq.

SoneTysen Hataz (n,)
pll) = p(l) - 25
n=0 HMGIC(”"Z)
For the length thresholding the probability of all
lengths below the length threshold is set to zero.

9)

0 if

p(l) = { p(l) if L< Then

l Z TLen (10)

To calucalte the detection rates for the noise and
the contours as defined in equation 2 and 1 the final
length histograms are divided by the size of the image
and the number of contour pixels respectively. Sum-
ming up over the histogram bins multiplied by their
corresponding length gives us the detection rates. If



we denote the final contour length histograms py for
noise and p¢ for the real contours, N; the number of
total image pixels and N the number of real contour
pixels in the image we get:

inf
I=T1en pc (l) -

on = 11
PCont Ne (11)
inf
1=Tren pN(l) ' l P
oise — 12
PN N, (12)

With this and equation 3 the final evaluation result
is calculated.

4.4 Measuring Model Parameters

The parameters of our contour extraction model are
several histograms. For these histograms we need the
pixel values along the contours in the contour image
and for lines their displacement from their real loca-
tion. Additionally, the effects of breaking lines have to
be taken into account. We now describe how to meas-
ure these values. The methods we use are different for
noise and real contours.

For real contours we first obtain ground truth on
their positions. If the noise can be reproduced this
is best done by usings artifical images. Next we fol-
low the contours. For each step along the contour the
following steps are executed:

e We search the closest nonzero pixel to the actual
contour point on a line orthogonal to the current
contour direction. We will call this the edge pixel
value from now on.

e If this pixel is not connected to the pixel found
for the last contour point we assume the contour
is broken.

o If their are more than one neigbouring pixel to the
actual contour pixel (i.e. branches) we assume a
50 percent probability that the contour breaks.

For the edge value statististics a broken contour will
always count as an edge value of zero. For Noise the
main problem is getting the geometry of the resulting
contours. We do this by using the contour extraction
and chaining process with all thresholds set to zero.
Then for each point in the contour chains the following
is done.

e The value at the contour point is the edge pixel
value.

o If the contour ends we assign a 50 percent chance
that it is connected with the next extracted con-
tour.

The last step is obviously wrong for very small
thresholds. For them the main reason for edges end-
ing is running into T-intersections with themselves or
other already extracted contours. When the threshold
is raised these intersections get fewer and we would
predict to short contours. As the purpose of the
thresholds is too eliminate noise, best precision is
needed for higher thresholds. Therefore this precision
tradeoff of high threshold against low threshold seems
Jjustified.

4.5 Independance of 7,,,, T,.,. and
Displacement

So far in the model so far we have assumed independ-
ance of the minimum threshold T},;, and the max-
imum threshold T,,,, as well as the distance.

The maximum distribution will initially be ran-
domly distributed. The smoothing in the edge de-
tector will act as a low pass filter introducing a de-
pendency between edge pixels.

The minimum thresholding will cause all edge pixel
values to be above the minimum threshold. This
does not interfere with the maximum thresholding
as the maximum threshold is always above the min-
imum threshold. As connected pixels are correlated
the pixels near the ends of a contour will however of-
ten be close to the minimum threshold. For very short
chains a correlation between the minimum threshold
and the maximum of the chain can be expected. As
very short chains will be eliminated by the length
thresholding the error from this should be small.

For the distance histogram it seems possible that
it is correlated with the minimum threshold for edge
pixels. As weak edges have a weaker detector re-
sponse, noise might be more likely to displace them.
To test this we measured the correlation between edge
pixel values and edge displacement with different de-
grees of smoothing. The result for a strong smoothing
Deriche edge detector (o = 0.5) is shown in figure 4.
The true position of the edge is between 7 and 8.

As it can be seen in the image the distance and
the canny value are hardly correlated. A mathematical
evaluation by calculating the covariance matrix of the
absolute distance vs. the edge pixel values suggest a
change of about 0.2 pixels of the expectation value of
the location over the full range of minimum threshold
values. The error from the assumption that location
and T, are independent can therefore be expected
to be small.
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5 Experimental Evaluation of
the Model

In this section we want to show experimental data
to confirm the models validity and to determine how
precise the model is. The artifical images contained
straight edges corrupted by additive guassian noise.
Edge detection was done with the Deriche [6] version
of the Canny edge detector (o = 2.0).

To do this we first have a look on the models abil-
ity to predict the results of the intermediate steps of
the extraction process for noise and contours separ-
ately. We then compare the error values provided by
the model to the real error determined emiprically.
Finally we use the model for its actual purpose and
compare its ability to tune parameters to static para-
meter settings.
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Figure 5: Extraction Stages - Real Data

Figures 5 and 6 shows the length histogram after
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Figure 6: Extraction Stages - Model Data

the different extraction stages. Figure 5 shows real
data while figure 6 is synthetic data generated by the
model. It can be seen that qualitatively all steps of the
extraction process are modeled correctly. Quantitat-
ive analysis shows that the largest error is introduced
by the initial histogram generation.
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Figure 7: Real measured Detection Error

Figure 7 shows the Error surface that is obtained
when the parameters Tys;, and Thr,, are varied with
the length threshold Ty, set to 10. Figure 8 shows
the same surface predicted by our model. Two things
are apparent. First the absolute precision of the model
for small threshold values is low. In this case a great
number of noise pixels is detected as contours. We
believe this is mainly due to the tradeoff described in
section 4.4. Second the location of the (for this S/N ra-
tio) relatively large region where the error is minimal
is correctly predicted by the model.

To obtain a quantitative result we compare the er-
ror obtained with the predicted best parameters to the
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error obtained with the optimal parameters. The op-
timal parameters where found by a exhaustive search
over the parameter space. 40 measurements have been
made with a signal to noise ratio varying from infinity
to 0.8. The result is shown in figure 9. 1 on the y-scale
denotes that all image pixels are classified incorrectly.
Calculation of the optimal parameters for all S/N ra-
tios of the plot by exhaustive search took 16 hours on
a Sparc10 while the model predicted parameters were
calculated in about 10 minutes. The length threshold
was set to 10 to avoid increasing the computational
time of the exhaustive search by a factor of 10. Both
times can be optimized considerably.
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Figure 9: Evaluation of Parameter Adjustment

It can be seen that the prediction of the error of
the extraction process is not very precise. The model
can therefore not be used to predict the quality of
the results of the contour extraction process directly.
The real error obtained with the parameter settings
proposed by the model however is only slightly worse

than the optimal parmaeter settings. From the plot we
read a precision 1 percent of the image pixels or 10
percent of the conotur pixels.

Finally we want to compare our model pased para-
meter adjustment with static parameter adjustment.
Figure 10 shows results of the above experiment re-
ceived with the optimal setting as well as several static
parameter settings (chosen to be optimal for one signal
to noise level only). Tt can be seen that no parameter
setting provides good results over the complete signal
to noise range.
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Figure 10: Model Based vs. Static Parameter Tuning

Further experimantal data can be found in [7].

6 Conclusion

Quantitative evaluation of computer vision systems is
an increasingly important subject. Quantitative eval-
uation is only possible if methods for automatic para-
meter tuning are found. Currently the only approach
to parameter tuning is to develop a model of the vision
process and to use it to predict parameter settings. In
this article we presented a scheme for the evlauation
of contour extraction schemes and the adjustment of
their parameters. We have shown that this systems
gives valid results and have given an estimation of its
precision.

Future work will include the usage of the parameter
tuning scheme for tuning of parameters for real-time
vision systems as well as a qunatitative analysis of
image enhancement and non-linear, adaptive contour
detection schemes.
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